The group G is isomorphic to the group labelled by [360, 118] in the Small Groups library. Ordinary character table of $G \cong A6$:

	1a	2a	3a	3b	4a	5a	5b
χ_1	1	1	1	1	1	1	1
χ_2	5	1	2	-1	-1	0	0
χ_3	5	1	-1	2	-1	0	0
χ_4	8	0	-1	-1	0	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$
χ_5	8	0	-1	-1	0	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$
χ_6	9	1	0	0	1	-1	-1
χ_7	10	-2	1	1	0	0	0

Trivial source character table of $G \cong A6$ at p = 3:

This is source character table of $a = no$ at $p = 0$.														
Normalisers N_i		N_1					N_2		N_3		N_4			
p-subgroups of G up to conjugacy in G		P_1				P_2		P_3		P_4				
Representatives $n_j \in N_i$		2a	5a	5b	4a	1a	2a	1a	2a	1a	4a	2a	4b	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	27	3	2	2	-1	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 1 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	18	-2	$-E(5) - E(5)^4$	$-E(5)^2 - E(5)^3$	0	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	18	-2	$-E(5)^2 - E(5)^3$	$-E(5) - E(5)^4$	0	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 1 \cdot \chi_4 + 1 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	36	0	1	1	-2	0	0	0	0	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 1 \cdot \chi_6 + 0 \cdot \chi_7$	9	1	-1	-1	1	0	0	0	0	0	0	0	0	
$1 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	6	2	1	1	0	3	1	0	0	0	0	0	0	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	15	-1	0	0	-1	3	-1	0	0	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	6	2	1	1	0	0	0	3	1	0	0	0	0	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	15	-1	0	0	-1	0	0	3	-1	0	0	0	0	
$1 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	1	1	1	1	1	1	1	1	1	1	1	1	1	
$0 \cdot \chi_1 + 1 \cdot \chi_2 + 1 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 0 \cdot \chi_7$	10	2	0	0	-2	1	1	1	1	1	-1	1	-1	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$	10	-2	0	0	0	1	-1	1	-1	1	E(4)	-1	-E(4)	
$0 \cdot \chi_1 + 0 \cdot \chi_2 + 0 \cdot \chi_3 + 0 \cdot \chi_4 + 0 \cdot \chi_5 + 0 \cdot \chi_6 + 1 \cdot \chi_7$		-2	0	0	0	1	-1	1	-1	1	-E(4)	-1	E(4)	

```
P_1 = Group([()]) \cong 1
```

$$P_2 = Group([(3, 5, 6)]) \cong C3$$

$$P_3 = Group([(1, 2, 4)(3, 6, 5)]) \cong C3$$

$$P_4 = Group([(3,5,6),(1,2,4)(3,6,5)]) \cong C3 \times C3$$

$$N_1 = AlternatingGroup([1..6]) \cong A6$$

$$N_2 = Group([(1, 2, 4), (3, 5, 6), (1, 2)(5, 6)]) \cong (C3 \times C3) : C2$$

$$\begin{array}{l} N_2 = Group([(1,2,4),(3,5,6),(1,2)(5,6)]) \cong (\text{C3 x C3}): \text{C2} \\ N_3 = Group([(1,2,4)(3,6,5),(3,6,5),(2,4)(3,5)]) \cong (\text{C3 x C3}): \text{C2} \end{array}$$

$$N_4 = Group([(1,2,4),(3,5,6),(2,4)(3,6),(1,3,4,6)(2,5)]) \cong (C3 \times C3) : C4$$